สมการที่มีตัวแปรเดียวก็สามารถแก้ได้โดยวิธีกราฟ เช่น ถ้าต้องการแก้สมการ 2x + 3 = 5 ซึ่งมีคำตอบเหมือนสมการ 2x - 2 = 0 (นำ 5 มาลบทั้งสองข้างของเครื่องหมาย =) เราเพิ่มตัวแปร y ขึ้นมาอีกหนึ่งตัว โดยกำหนดให้ 2x -2 = y

สมการนี้เป็นสมการที่มีตัวแปรสองตัว คำตอบของสมการ 2x - 2 = y คือทุกจุดที่อยู่บนเส้นตรงสีแดง ค่าของ x ที่ทำให้ y เป็น 0 เป็นคำตอบของสมการ 2x-2 =0 จุดบนกราฟที่ y เป็น 0 คือจุดที่กราฟตัดแกนนอน เส้นตรงนี้ตัดแกนนอนที่จุด (1,0)

เราจึงสรุปได้ว่า 1 เป็นคำตอบของสมการ 2x - 2 = 0 หรือสมการ 2x + 3 = 5

สมการ x2 - 2x = 3 มีคำตอบเหมือนสมการ x2 - 2x - 3 = 0 เราแก้ได้โดยเขียนกราฟแสดงคำตอบของสมการ x2 - 2x - 3 = y (เส้นโค้งสีน้ำเงินในรูป) ค่าของ x ที่ทำให้ y เป็น 0 เป็นคำตอบของสมการ x2 - 2x - 3 = 0 จุดบนกราฟที่ y เป็น 0 คือจุดที่กราฟตัดแกนนอนได้แก่จุด (-1,0) และ (3,0)

เราจึงสรุปว่า -1 กับ 3 เป็นคำตอบของสมการ x2 - 2x - 3 = 0 หรือ x2 - 2x = 3

ในการแก้สมการ x2 - 2x + 2 = 0 เราเขียนกราฟแสดงคำตอบของสมการ x2 - 2x + 2 = y จะพบว่ากราฟนั้นไม่ตัดแกนนอน แสดงว่า จุด (x,0) ไม่อยู่บนกราฟ ดังนั้น (x,0) ไม่ใช่คำตอบของสมการ x2 - 2x + 2 = y นั่นคือ ไม่ว่า x จะแทนจำนวนจริงใดๆ ก็ตาม x2 - 2x + 2 ไม่เท่ากับ 0 เราจึงสรุปได้ว่าสมการ x2 -2x + 2 = 0 ไม่มีคำตอบที่เป็นจำนวนจริง

บางทีเราพบโจทย์บางประเภท เช่น "ชาวนาคนหนึ่งเลี้ยงหมูและไก่ ถ้านับหัวของสัตว์เหล่านี้จะได้ 20 หัว ถ้านับขาจะได้ 50 ขา ถามว่า เขามีหมูและไก่อย่างละกี่ตัว "

ถ้าให้ x แทนจำนวนหมู และ y แทนจำนวนไก่ เราจะได้สมการ 2 สมการคือ

x + y = 20 (จำนวนหัว)
4x + 2y = 50 (จำนวนขา)

เราต้องการหาค่าของ x และ y ซึ่งเมื่อนำไปแทนในสมการทั้งสองแล้วจะได้ข้อความจริงทั้งคู่ ในกรณีนี้ ถ้าแทน x ด้วย 5 และแทน y ด้วย 15 ในสมการทั้งคู่ จะได้ข้อความจริง เราจึงพูดว่า (5, 15) เป็นคำตอบของ ระบบสมการ (system of equations) ข้างต้น สมการทั้งสองเป็นสมการเชิงเส้นทั้งคู่ เราจึงเรียก ระบบสมการนี้ว่า ระบบสมการเชิงเส้น (system of linear equations)
สมการที่น่าสนใจประเภทหนึ่ง คือ สมการที่ต้องการคำตอบเฉพาะที่เป็นจำนวนเต็ม หรือจำนวนตักยะ สมการประเภทนี้เรียกว่า สมการไดโอแฟนทีน (Diophantine equations) ซึ่งเป็นชื่อที่ตั้งขึ้นเพื่อเป็นเกียรติแก่นักคณิตศาสตร์ชาวกรีกชื่อ ไดโอแฟนทัส *(Diophantus)
* ไดโอแฟนทัสมีชีวิตอยู่ในสมัยประมาณ 250 ปี ก่อนคริสต์ศักราช เป็นชาวเมืองอเล็กซานเดรีย เราไม่ค่อยทราบรายละเอียดเกี่ยวกับชีวิตของเขามากนัก แต่อาจจะคำนวณอายุของเขาได้จากคำซึ่งเล่ากันต่อๆ มาดังนี้

เขาเป็นเด็กอยู่ ของอายุของเขา เป็นวัยรุ่นอยู่ 1/12 ของอายุ เป็นชายโสดอยู่ 1/7 ของอายุ ลูกชายของเขาเกิดเมื่อเขาแต่งงานแล้ว 5 ปี ลูกชายตายก่อนเขา 4 ปี เขามีอายุยืนเป็น 2 เท่าของลูกชาย (คำตอบคือ 84 ปี)
ตัวอย่างของโจทย์ปัญหาประเภทนี้คือ "มีส้มอยู่จำนวนหนึ่ง ถ้าจะแบ่งให้คน 5 คนๆ ละ เท่าๆ กัน จะขาดส้ม 1 ผล ถ้าจะแบ่งให้คน 7 คนๆ ละเท่าๆ กันก็จะขาด 1 ผล ถามว่ามีส้มอยู่เท่าไร"

ถ้าสมมุติว่า มีส้มอยู่ n ผล เราจะได้ว่า n+1 หารด้วย 5 ลงตัว และหารด้วย 7 ก็ลงตัว นั่นคือ n+1 = 5x และ n+1 = 7y เมื่อ x และy แทนจำนวนเต็มบวก

เราจึงต้องแก้สมการ 5x = 7y เมื่อ x และ y แทนจำนวนเต็มบวก

จะเห็นว่า สมการนี้มีคำตอบมากมายได้แก่ (7,5), (14,10), (21,15), (28,20), (35,25), (42,30),... คำตอบเหล่านี้ให้ค่า 5x (หรือ 7y) เป็น 35, 70, 105, 140, 175, 210,... ตามลำดับ ดังนั้นค่าของ n ที่ต้องการคือ 34, 69, 104, 139, 174, 209,...

ถ้าโจทย์ถามเพิ่มเติมว่า จำนวนส้มน้อยที่สุดเป็นเท่าไร จึงจะมีลักษณะตามที่ต้องการ ก็จะได้คำตอบ 34

สมการไดโอแฟนทีนมีอยู่มากมายหลายประเภท สมการไดโอแฟนทีนที่มีชื่อเสียงมากสมการหนึ่งคือ
สมการ x2 + y2 = z2 ซึ่งเราเรียกกันว่า สมการปีทาโกเรียน (Pythagorean equation) ชื่อนี้ตั้งขึ้นเพื่อเป็นเกียรติแก่ ปีทาโกรัส* (Pythagorus) การหาคำตอบที่เป็นจำนวนบวกของสมการนี้ก็คือ การหาความยาวที่เป็นจำนวนเต็มของด้านทั้งสามของสามเหลี่ยมมุมฉากนั่นเอง คำตอบที่เราทราบกันดีคือ x=3, y=4, z=5 ซึ่งเขียนได้อีกอย่างหนึ่งว่า (3,4,5) สมการปีทาโกเรียนนี้มีคำตอบมากมายนับได้ไม่หมด คำตอบทั้งหลายหาได้จากสูตรต่อไปนี้ คือ

x = a2 - b2,y = 2ab และ z = a2 + b2 เมื่อ a และ b แทนจำนวนเต็ม เช่น ถ้าให้ a=2 และ b = 1 เราจะได้คำตอบ (3,4,5) ถ้าให้ a = 3 และ b = 2 เราจะได้คำตอบ (5,12,13) ถ้าให้ a = 3 และ b = 1 เราจะได้คำตอบ (8,6,10) เป็นต้น

เรากล่าวได้ว่าสมการปีทาโกเรียนนั้น เราทราบคำตอบได้อย่างสมบูรณ์ เพราะเรามีวิธีหาคำตอบทั้งหมดได้
ปิทาโกรัส
ปิทาโกรัส
* ปีทาโกรัส เป็นนักปรัชญาและนักคณิตศาสตร์ชาวกรีกมีชีวิตอยู่ระหว่างปี 582 - 507 ปีก่อนคริสต์ศักราช ทฤษฎีบทของเขาซึ่งเรารู้จักกันดี คือ ทฤษฎีบทในเรขาคณิตที่กล่าวว่า กำลังสองของความยาวด้านตรงข้ามมุมฉาก ของสามเหลี่ยมมุมฉากใดๆ ย่อมเท่ากับผลบวกของกำลังสองของความยาวอีกสองด้าน
กราฟแสดงคำตอบของระบบอสมการ
กราฟแสดงคำตอบของระบบอสมการ
ประโยคที่มีตัวแปร และเชื่อมด้วยเครื่องหมายแสดงความไม่เท่ากัน เช่น 4x < 20 นี้ เรียกว่า อสมการ การหาค่าของตัวแปรซึ่งจะทำให้ได้ข้อความจริง เรียกว่า การแก้อสมการ
หัวข้อก่อนหน้า